
www.manaraa.com

Int. Journal of Computing and Optimization, Vol. 1, 2014, no. 2, 73 - 93

HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988/ijco.2014.4813

Data Structures for Big Data

 Ranjit Biswas

Department of Computer Science

Jamia Hamdard University

Hamdard Nagar, New Delhi–110062, India

 Copyright © 2014 Ranjit Biswas. This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

Abstract

The present day world dealing with big data (expanding very fast in 4Vs: Volume,

Varity, Velocity and Veracity) needs New advanced kind of logical and

physical storage structures, New advanced kind of heterogeneous data structures,

New mathematical theories and New models for processing giant big data in 4Vs.

In the literature, there is no appropriate data structure for big data, no appropriate

network topology for big data, no appropriate distributed system for big data. The

existing data structures, network topologies and type of distributed system are not

sufficiently rich to deal with big data. The existing network topologies like tree

topology or bus/ring/star/mesh/hybrid topologies seem to be weak topologies for

big data processing. For a success, there is no other way but to develop ‘new

data structures’, ‘new type of distributed systems’ having a very fast and

tremendous extent of mutual compatibility and mutual understanding with the

new data structures, ‘new type of network topologies’ to support the new

distributed system, and of course ‘new mathematical/logical theory’ models.

Needless to mention that the next important issue is how to integrate all these

‘new’ to make ultimately a single and simple scalable system to the laymen users.

With these views in mind, Biswas [11, 12, 15] introduced a new special type of

fundamental data structure ‘atrain’ exclusively for heterogeneous big data

(where, the data structure ‘train’ is exclusively for homogeneous big data) and

then introduced a new distributed system called by ‘Atrain Distributed System’

(ADS) which can process big data of any 4V of any momentum. The rich merit of

ADS [15] is due to its layout architecture making it infinitely scalable both in

breadth (horizontally) and depth (vertically). The ‘Atrain Distributed System’

(ADS) could be unitier or multitier having a single unique Pilot Computer (PC)

and several Distributed Computers (DCs) connected by new

www.manaraa.com

74 Ranjit Biswas

type of network topologies called by ‘Multi-horse Cart Topology’ and ‘Cycle

Topology’. ADS is completely compatible with the data structure ‘atrain’. The

data structure ‘atrain’ [11, 12, 15] is a very powerful dynamic and flexible data

structure, being the first data structure introduced exclusively for big data. Thus

‘Data Structures for Big Data’ is to be regarded as a new subject in Big Data

Science, not just as a new topic, considering the explosive momentum of the big

data. With philosophically eyes, big data could be viewed as a higher order tensor.

Based upon the train-atrain notion of Biswas [11, 12, 15], in this paper the

author introduces few more data structures for big data : homogeneous stacks

‘train stack’ and ‘rT-coach stack’, heterogeneous stacks ‘atrain stack’ and

‘rA-coach stack’, homogeneous queues ‘train queue’ and ‘rT-coach queue’,

heterogeneous queues ‘atrain queue’ and ‘rA-coach queue’, homogeneous binary

trees ‘train binary tree’ and ‘rT-coach binary tree’, heterogeneous binary trees

‘atrain binary tree’ and ‘rA-coach binary tree’, homogeneous trees ‘train tree’ and

‘rT-coach tree’, heterogeneous trees ‘atrain tree’ and ‘rA-coach tree’, to enrich

the subject ‘Data Structures for Big Data’ for big data science.

Mathematics Subject Classification: 68P05, 68M14, 11C20, 15B36

Keywords: train, CD-table, atrain, atrain distributed system (ADS), ‘Multi-horse

Cart Topology’ and ‘Cycle Topology’, train stack, atrain stack, rt-coach stack,

rA-coach stack, train queue, atrain queue, rT-coach queue, rA-coach queue, train

binary tree, atrain binary tree, rT-coach binary tree, rA-coach binary tree, train

tree, atrain tree, rT-coach tree and rA-coach tree

1 Introduction

The present world of big data [5 - 7, 9, 10 - 14, 15, 18] are expanding very fast in

4Vs: Volume, Varity, Velocity and Veracity, and also in many more directions.

How to deal with explosive momentum of big data, how to process big data in an

efficient way within limited resources, etc. are of major concern to the computer

scientists now - a - days. Big data has variable mass of 4Vs in various directions,

and in this sense it is to be philosophically regarded as a vector, or rather as a

tensor. The existing data structures of computer science are neither appropriate

nor sufficient to deal with the big data. The homogeneous data structure r-Train

and the heterogeneous data structure r-Atrain for big data are introduced by

Biswas in [11, 12, 15], being the first attempt to introduce any exclusive data

structure for big data. The architecture of a new type of distributed system ‘Atrain

Distributed System’ (ADS) exclusively designed for processing big data is then

introduced by Biswas in [15]. The huge merit of ADS stands on the fact that both

the data structures train and atrain are 100% compatible with the new distributed

system ‘ADS’ for processing big data, in particular to coup easily with 4Vs of any

momentum.

www.manaraa.com

Data structures for big data 75

It is obvious that the ‘Data Structures for Big Data’ is to be regarded as a new

subject in big data science, not just as a new topic, considering the explosive

momentum of the big data in a new universe. One could view big data with

philosophical eyes as a higher order tensor. The data structures train and atrain

with ADS and the mathematical models like ‘solid matrix/latrix’,

hematrix/helatrix to store big data of any big amount of any datatype have opened

easy gates to the world giant organizations and their developers to deal with big

data. In this paper we introduce few more new data structures which are :

homogeneous stacks ‘train stack’ and ‘rT-coach stack’; heterogeneous stacks

‘atrain stack’ and ‘rA-coach stack’; homogeneous queues ‘train queue’ and

‘rT-coach queue’; heterogeneous queues ‘atrain queue’ and ‘rA-coach queue’;

homogeneous binary trees ‘train binary tree’ and ‘rT-coach binary tree’;

heterogeneous binary trees ‘atrain binary tree’ and ‘rA-coach binary tree’;

homogeneous trees ‘train tree’ and ‘rT-coach tree’; heterogeneous trees ‘atrain

tree’ and ‘rA-coach tree’; to enrich the subject ‘Data Structures for Big Data’ with

the extended notion of the architecture of the data structures r-atrain and r-train

of Biswas [11, 12, 15] for big data. As a pre-requisite to understand the work of

this paper, one could see the work of Biswas [11, 12, 15] to get introduced with

the basics of r-train, r-atrain and ADS for big data.

2 r-Train Stack and r-Atrain Stack

In this section we introduce two new data structures for big data:

 (1) ‘r-train stack’ or ‘train stack’ in short, and

 (2) ‘r-atrain stack’ or ‘atrain stack’ in short.

(The natural number r is suitably predecided and fixed by the programmer

depending upon the problem of Big Data under consideration and also upon the

organization/industry for which the problem is posed. We do not feel it

appropriate to propose r in a r-train or in a r-atrain as a variable).

2.1 Introducing r-Train Stack (or Train Stack, in short)

First of all we define few terminologies.

2.1.1 Coach of a ‘Train Stack’

The term coach here is coined from the notion of the data structures train and

atrain for big data [11, 12, 15]. By a coach C in a train stack we mean a

non-empty larray (however, it could be a null larray) containing data of

homogeneous data type.

www.manaraa.com

76 Ranjit Biswas

The following figure shows a coach of a 7-train in a ‘7-train stack’ as a larray.

69.37 5.75 0.48 95.26 732.03 0.40 571.86 e

Figure 1. a coach of a train in a 7-train stack

Suppose that the larray C has m number of elements in it. If each element of C is

of size x bytes, then to store the coach C in memory exactly m.x number of

consecutive bytes are required.

2.1.2 Status of a Coach and Tagged Coach (TC) of a Train Stack

The status s of a coach is a non-negative integer variable which is equal to the

number of  elements present in it (i.e. in its larray) at this point of time.

Therefore, 0 ≤ s ≤ r. The significance of the variable s is that it informs us about

the exact number of free spaces available in the coach at this point of time. If

there is no  element in the larray of the coach C, then the value of s is 0 at this

point of time.

If C is a coach, then the corresponding tagged coach (TC) is denoted by the

notation (C, s) where s is the status of the coach. This means that C is a coach

tagged with an information on the total amount of available free space (here it is

termed as  elements) inside it at this time.

For example, consider the coach C in Figure 1. Clearly its corresponding TC will

be denoted by (C, 0) as shown below in Figure 2.

69.37 5.75 0.48 95.26 732.03 0.40 571.86 e

Figure 2. the tagged coach of the coach C in a train of a 7-train stack

Consider the following coach H in a train of a 7-train stack represented as a larray

in Figure 3 below.

1037 875 0 ɛ 3 ɛ 61 e

Figure 3. a coach of a train in a 7-train stack

Clearly its corresponding TC will be denoted by (H, 2) as shown in Figure 4.

Figure 4. the tagged coach of the coach H

1037 875 0 ɛ 3 ɛ 61 2 e

www.manaraa.com

Data structures for big data 77

2.1.3 r-Train Stack (or, Train Stack)

A ‘r-train stack’ (or, train stack) is a crisp stack of r-trains containing data of

homogeneous data type in the whole stack. For a given r-train stack, the value of

the natural number r is fixed throughout. For different r-train stacks, the value of r

could be different. The r-train stack is thus a linear data structure in which a

r-train may be added or removed only at the end, called the TOP of the train stack

in LIFO manner as in classical stack. If TOP = 0 (Null), it implies that the train

stack is an empty train stack.

Figure 5. a train stack

Thus a train stack T (see Figure 5) may be written as an array of trains as

 T: T1, T2, T3, ……….,Tn

with the implication that the rightmost element is the top element (train Tn). In a

train stack, all the trains contain data of identical data type, and so a train stack is

to be regarded as a homogeneous data structure.

Insertion and deletion can occur only at the top of the train stack. Two basic

operations associated with train stacks are:

(i) “PUSH” (to insert a new train into a train stack)

(ii) “POP” (to delete a train from a train stack)

The train stack has the following two important operations too, which can be

easily implemented using PUSH and POP multiple times, and the properties of the

data structure larray:

www.manaraa.com

78 Ranjit Biswas

(iii) “c - PUSH” for pushing a coach.

 (to insert a tagged coach in a given train of the train stack)

(iv) “c - POP” for popping a coach.

 (to delete a tagged coach from a given train of the train stack)

2.1.4 rT-Coach Stack (or Coach Stack)

A ‘rt-coach stack’ (or, coach stack in short) is a special case of r-train stack where

every train consists of one coach only. For a given rT-coach stack, the value of the

natural number r is fixed throughout. For different rT-coach stacks, the value of r

could be different. Thus a rT-coach stack is a crisp stack of tagged coaches

containing data of homogeneous data type. It is a linear data structure in which a

tagged coach may be added or removed only at the end, called the TOP of the

train stack in LIFO manner as in classical stack. If TOP = 0 (Null), it implies that

the coach stack is an empty coach stack. (The term ‘rT-coach’ signifies that it is a

coach of a r-Train).

Figure 6. a rT-coach stack

Thus a rT-coach stack T (see Figure 6) may be written as an array of TCs as

 T: (C1, s1), (C2, s2), (C3, s3), (C4, s4),…….., (Cr, sr)

with the implication that the rightmost element is the top element (tagged coach).

In a rT-coach stack all the coaches contain data of identical data type, and so a

rT-coach stack is to be regarded as a homogeneous data structure.

Insertion and deletion can occur only at the top of the rT-coach stack. Two basic

operations associated with rT-coach stacks are:

www.manaraa.com

Data structures for big data 79

(i) “c - PUSH” (to insert a new tagged coach into a rT-coach stack)

(ii) “c - POP” (to delete a tagged coach from a rT-coach stack)

The rT-coach stack has the following two important operations too, which can be

easily implemented using PUSH, POP, c-PUSH, and c-POP operations multiple

times, and the properties of the data structure larray:

(iii) “e - PUSH” for pushing an element.

(to insert an element into a tagged coach (TC) of a rT-coach stack where

status s is not 0, i.e. at least 1).

Insertion of an element (a new passenger) x inside the coach Ci is feasible if x is

of same datatype (like other passengers of the coach) and if there is an empty

space available inside the coach Ci.

If status of Cj is greater than 0 then data can be stored successfully in the coach,

otherwise insertion operation fails here. After each successful insertion, the status

s of the coach is to be updated by doing s = s –1.

For insertion of x, we can replace the lowest indexed passenger of Ci with x.

(iv) “e - POP” for popping an element.

(to delete an element from a tagged coach of a rT-coach stack, retaining the

tagged coach in the memory adjusting its status s by doing s s+1).

We can delete a data element eij from the coach Ci. Deletion of a data (passenger)

from a coach means replacement of the data by an element (of same datatype).

Consequently, if eij= , then the question of deletion does not arise. Here it is

pre-assumed that eij is a non- member element of the coach Ci. Thus deletion of

eij is done by replacing it by the null element , and updating the status s by doing

s = s+1. Deletion of a data element (passenger) does not effect the size r of the

coach.

For example, consider the tagged coach (Ci, m) where

 Ci = < ei1, ei2, ei3, ei4,, eir> .

If we delete ei3 from the coach Ci, then the updated tagged coach will be

 (Ci, m+1) where Ci =
 < ei1, ei2, , ei4,....................., eir>.

2.2 Introducing r-Atrain Stack (or Atrain Stack)

Before proceeding to introduce ‘r-atrain stack’, few terminologies needs to be

defined:

2.2.1 Code of a Datatype and CD-Table for an Atrain Stack

The concept of CD-Table in atrain stack is analogous to that of the CD-Table

introduced in case of r-atrain (atrain) by Biswas [11, 12, 15]. A table is to be

created by the user (i.e. by the concerned organization) to fix unique integer code

www.manaraa.com

80 Ranjit Biswas

for each datatype which are under use in the organization. This is not an absolute

set of codes to be followed universally by every organization, but it is a local

document for the concerned organization. For different organizations, this table

could be different. But once it is fixed by an organization it should not be altered

by this organization, except that addition of new datatypes and corresponding

codes may be decided and be incorporated in the table at any stages later retaining

the existing records. This table is called Code of Datatype Table or CD-Table

(in short). A sample CD-Table of a hypothetical organization is shown in Table.1

for the sake of understanding. It may be noted that for any organization, for the

datatypes character, integer, boolean, etc. the individual space requirement

respectively are absolutely fixed. But for a particular organization, for the

datatypes String-1, String-2 and String-3 (String type appearing thrice in this case)

the space requirement in the above table has been fixed at 10 bytes for one kind,

20 bytes for another and 50 bytes for another kind. Similarly there are four types

of file: File - 1, File - 2, File - 3 and File - 4, in the CD- Table and the space

requirement for them have been fixed at 100 KB, 1 MB, 10 MB and 25 MB

respectively, fixed by choice of the concerned organization (developers).

Table. 1. A hypothetical example of a CD-Table of an organization

Sr. No. Datatype Space required

in bytes (n)

Code of Datatype

(c)

1 Character 1 0

2 Integer 2 1

3 Real 4 2

4 String-1 10 3

5 String-2 20 4

6 String-3 50 5

7 File-1 100 KB 6

8 File-2 1 MB 7

9 File-3 10 MB 8

10 File-4 25 MB 9

11 ……………… …………… …….

12 ……………… …………… …….

2.2.2 Coach of an Atrain Stack

As seen in subsection 2.1.1 earlier, all the coaches in a train stack contain data of

homogeneous datatype across the train. In an atrain stack although a coach stores

homogeneous data only (not heterogeneous data), but different coaches of an

atrain stack store data elements of different datatypes. Thus the data structure

atrain stack is a kind of heterogeneous data structure. For constructing a coach for

an atrain stack in an organization, we must know in advance the datatype of the

data to be stored in it. For this we have to look at the CD-Table of the

organization, and reserve space accordingly for r number of data.

www.manaraa.com

Data structures for big data 81

Suppose that the larray A has r number of elements in it of a given datatype. If

each element of A is of size x bytes (refer to CD-Table) then to store the coach

C in memory exactly r.x number of consecutive bytes are required, and

accordingly the coach be created by the programmer (concerned organization). In

our discussion henceforth, by the phrase “datatype of a coach” we shall always

mean the datatype of the data elements of the coach. A coach stores and can store

only homogeneous data (i.e. data of identical datatype), but datatype may be

different for different coaches in an atrain stack.

By a coach C in an atrain stack we mean a non-empty larray (however, it could be

a null larray) containing data of homogeneous data type.

The following two figures shows two coaches C1 and C2 of an atrain stack T.

69.37 5.75 0.48 95.26 732.03 0.40 571.86 e

Figure 6. a coach C1 of a 7-atrain stack T

* @ ɛ & ɛ # e

Figure 7. another coach C2 of the 7-atrain stack T

2.2.3 Status of a Coach and Tagged Coach (TC) of an Atrain Stack

The status s of a coach in an atrain stack is a pair of information (c, n), where c is

a non-negative integer variable which is the code of datatype (with reference to

the concerned CD-Table) of the data to be stored in this coach and n is a

non-negative integer variable which is equal to the number of  elements

present in it (i.e. in its larray) at this point of time. Therefore, 0 ≤ n ≤ r. In the

status s = (c, n) of a coach, the information c is called the “code-status” of the

coach and the information n is called the “availability-status” of the coach at this

time. The significance of the variable n is that it informs us about the exact

number of free spaces available in the coach at this point of time. If there is no 

element at this time in the larray of the coach C, then the value of n is 0. Thus,

without referring the CD-Table, the status of a coach can not be and should not be

fixed.

If C is a coach in an atrain stack, then the corresponding tagged coach (TC) is

denoted by the notation [C, s], where s = (c, n) is the status of the coach. This

means that C is a coach tagged with the following two information:

(i) one signifying the datatype of the data of the coach.

(ii) the other reflects the total amount of available free spaces (here it is

termed as  elements) inside the coach at this time.

www.manaraa.com

82 Ranjit Biswas

(Thus the concept of TC for atrain stack is slightly different from the concept of

TC for train stack defined earlier in section 2.1.2.).

For example, consider Figure 6. and Figure 7. of two coaches C1 and C2

respectively of the atrain stack T. Then the following two figures (in Figure 8. and

Figure 9.) shows the two tagged coaches C1 and C2 of the atrain stack T.

69.37 5.75 0.48 95.26 732.03 0.40 571.86 e, (2,0)

Figure 8. the tagged coach of the coach C1 in the 7-atrain stack T

* @ ɛ & ɛ # e, (0,2)

Figure 9. the tagged coach of the coach C2 in the 7-atrain stack T

2.2.4 r-Atrain Stack (or, Atrain Stack)

An ‘atrain stack’ is a crisp stack of r-atrains containing data of heterogeneous

data type. Here, each coach is homogeneous internally containing data of identical

data type, but different coaches have data of different data types. For a given

r-atrain stack, the value of the natural number r is fixed throughout. For different

r-atrain stacks, the value of r could be different. The datatype in an atrain stack

may vary from coach to coach (unlike in train stacks), but in a coach all data must

be homogeneous i.e. of identical datatype. Thus each coach is homogeneous,

although the atrain stack is heterogeneous. In this sense, ‘atrain stack’ is regarded

as a heterogeneous data structure. (In a homogeneous data structure the data

elements considered are all of the same datatype, like in array, linked list, train,

etc., but in a heterogeneous data structure data elements are of various datatypes

as in atrain).

Analogous to the notion of a train stack, an atrain stack is also a linear data

structure in which an atrain may be added or removed only at the end, called the

TOP of the atrain stack in LIFO manner as in classical stack (see Figure 10). If

TOP = 0 (Null), it implies that the atrain stack is an empty atrain stack.

www.manaraa.com

Data structures for big data 83

Figure 10. an atrain stack

Thus an atrain stack T (see Figure 10) may be written as an array of atrains as

 T: T1, T2, T3, ……….,Tn

with the implication that the rightmost element is the top element (atrain Tn).

Insertion and deletion can occur only at the top of the atrain stack. Two basic

operations associated with atrain stacks are:

(i) “PUSH” (to insert a new atrain into an atrain stack)

(ii) “POP” (to delete an atrain from an atrain stack)

The atrain stack has the following two important operations too, which can be

easily implemented using PUSH and POP multiple times, and the properties of the

data structure larray :

(iii) “c - PUSH” for pushing a coach.

 (to insert a tagged coach in a given atrain of the atrain stack)

(iv) “c - POP” for popping a coach.

 (to delete a tagged coach from a given atrain of the atrain stack)

It is important to note that in this heterogeneous data structure atrain stack, the

size of coaches in bytes are not same, although each coach accommodates r

number of data elements (including ɛ which is of same data type as explained in

[12, 15]). It depends upon the code from the CD-Table. Therefore, each time we

push a new atrain in an atrain stack (assuming that there is no overflow), the TOP

gets updated accordingly in a dynamic way. Similarly, each time we POP an

atrain from an atrain stack, the TOP gets updated accordingly.

www.manaraa.com

84 Ranjit Biswas

2.2.5 rA-Coach Stack (or Coach Stack)

A ‘rA-coach stack’ (or, coach stack in short) is a special case of r-atrain stack

where every atrain consists of one coach only. For a given rA-coach stack, the

value of the natural number r is fixed throughout. For different rA-coach stacks,

the value of r could be different. Thus a rA-coach stack is a crisp stack of tagged

coaches (of atrain) containing data of heterogeneous data type. It is a linear data

structure in which a tagged coach may be added or removed only at the end,

called the TOP of the rA-coach stack in LIFO manner as in classical stack. If TOP

= 0 (Null), it implies that the rA-coach stack is an empty rA-coach stack. (The

term ‘rA-coach’ signifies that it is a coach of a r-Atrain).

Figure 11. a rA-coach stack

Thus a rA-coach stack T(see Figure 11) may be written as an array of TCs as

 T: (C1,s1), (C2,s2), (C3,s3), (C4,s4), ……..,(Cr,sr)

i.e. as T: (C1,(c1,s1)), (C2,(c2,s2)), (C3,(c3,s3)), (C4,(c4,s4)), …….., (Cr,(cr,sr)),

with the implication that the rightmost element is the top element (TC).

Insertion and deletion can occur only at the top of the rA-coach stack. Two basic

operations associated with rA-coach stacks are:

(i) “c - PUSH” (to insert a new tagged coach into a rA-coach stack)

(ii) “c - POP” (to delete a tagged coach from a rA-coach stack)

The rA-coach stack has the following two important operations too, which can be

easily implemented using PUSH, POP, c-PUSH, and c-POP operations multiple

times, and the properties of the data structure larray:

www.manaraa.com

Data structures for big data 85

(iii) “e - PUSH” for pushing an element.

(to insert an element into a tagged coach (TC) of a rA-coach stack where

status s is not 0, i.e. at least 1).

Insertion of an element (a new passenger) x inside the coach Ci is feasible if x is

of same datatype (like other passengers of the coach) and if there is an empty

space available inside the coach Ci.

If status of Cj is greater than 0 then data can be stored successfully in the coach,

otherwise insertion operation fails here. After each successful insertion, the status

s of the coach is to be updated by doing s = s –1.

For insertion of x, we can replace the lowest indexed passenger of Ci with x.

(iv) “e - POP” for popping an element.

(to delete an element from a tagged coach of a rA-coach stack, retaining the

tagged coach in the memory adjusting its status s by doing s s+1).

We can delete a data element eij from the coach Ci. Deletion of a data (passenger)

from a coach means replacement of the data by an  element (of same datatype).

Consequently, if eij = , then the question of deletion does not arise. Here it is

pre-assumed that eij is a non- member element of the coach Ci in the atrain

stack.

For j = 1, 2, ..., r, deletion of eij is done by replacing it by the null element  , and

updating the availability-status n by doing n = n+1. Deletion of a data element

(passenger) does not effect the size r of the coach.

For example, consider the tagged coach [Ci, (ci,m)] where

 Ci = < ei1, ei2, ei3, ei4,, eir> .

If we delete ei3 from the coach Ci, then the updated tagged coach will be

[Ci, (ci, m+1)] where Ci =
 < ei1, ei2, , ei4,, eir>.

It can be noted that the data structure rT-coach stack is a special case of the data

structure r-train stack, the data structure rA-coach stack is a special case of the

data structure r-atrain stack. The classical stack (in Computer Science) is a

‘1A-coach stack’, special case of the data structures rA-coach stack for r = 1.

3 r-Train Queue and r-Atrain Queue

In this section we introduce two new data structures for big data:

 (1) ‘r-train queue’ or ‘train queue’ in short, and

 (2) ‘r-atrain queue’ or ‘atrain queue’ in short.

The concept of the terminologies: coach, status and tag in a train queue are similar

to those of a coach in a train stack as discussed in subsection 2.1.1. The concept of

the terminologies: coach, status, tag, CD-table in an atrain queue are similar to

those of a coach in an atrain stack as discussed earlier in the subsections 2.2.2 and

2.2.3.

www.manaraa.com

86 Ranjit Biswas

A ‘r-train queue’ (or, train queue) is a crisp queue of r-trains containing data of

homogeneous data type across the whole queue. It is a linear data structure in

which deletion of a train can take place only at one end called the ‘front’ and

insertion of a train can take place only at the other one end called the ‘rear’, in the

manner of FIFO list, as shown in Figure 12 below.

Figure 12. a train queue

In the larray of a train queue, there are two pointer variables: FRONT and

REAR. The FRONT contains the location of the front TC and the REAR contains

the location of the rear TC. If FRONT = Null, then the train queue is empty.

Whenever a TC is deleted from the train queue, the value of FRONT gets

incremented by 1. Similarly, whenever a TC is added to the train queue, the value

of REAR gets incremented by 1.

A ‘rT-coach queue’ is a crisp queue of tagged coaches (of trains) containing data

of homogeneous data type. It is a linear data structure in which deletion of tagged

coach can take place only at one end called the ‘front’ and insertion of a tagged

coach can take place only at the other one end called the ‘rear’, in the manner of

FIFO list, as shown in Figure 13 below.

Figure 13. a rT-coach queue

A ‘r-atrain queue’ (or, atrain queue) is a crisp queue of r-atrains containing data of

heterogeneous data type, where each coach is homogeneous in itself. Datatypes of

different coaches are different. Thus it is a linear data structure in which deletion

of an atrain can take place only at one end called the ‘front’ and insertion of an

atrain can take place only at the other one end called the ‘rear’, in the manner of

FIFO list, as shown in Figure 14 below.

Figure 14. an atrain queue

The datatype in an atrain queue may vary from coach to coach (unlike in train

www.manaraa.com

Data structures for big data 87

queue), but in a coach all data must be homogeneous i.e. of identical datatype.

Thus each coach is homogeneous, although the atrain queue is heterogeneous. In

this sense, ‘atrain queue’ is regarded as a heterogeneous data structure.

A ‘rA-coach queue’ is a crisp queue of tagged coaches (as defined in sections

2.2.2 and 2.2.3) containing data of heterogeneous data type (see Figure 15).

Figure 15. a rA-coach queue

In an atrain queue or rA-coach queue, different TCs are of different sizes

depending upon the CD-table concerned.

It can be noted that the data structure rT-coach queue is a special case of the data

structure r-train queue, the data structure rA-coach queue is a special case of the

data structure r-atrain queue. The classical queue is a special case of the data

structures r-train queue and r-atrain queue.

4 r-Train Binary Tree and r-Atrain Binary Tree

In this section we introduce two new non-linear data structures for big data:

 (1) ‘r-train binary tree’ or ‘train binary tree’ in short, and

 (2) ‘r-atrain binary tree’ or ‘atrain binary tree’ in short.

They are basically extension of the notion of classical binary tree, and are defined

in a similar way in the context of train-atrain architecture for big data.

The concept of the terminologies: coach, status and tag in a train binary tree or

train tree are similar to those of a coach in a train stack as discussed in subsection

2.1.1. The concept of the terminologies: coach, status, tag, CD-table in an atrain

binary tree or atrain tree are similar to those of a coach in an atrain stack as

discussed earlier in the subsections 2.2.2 and 2.2.3.

A r-train binary tree (or train binary tree, in short) T is defined as a finite set of

r-trains called train-nodes such that:

(a) T is empty (called the null tree or empty tree), or

(b) T contains a distinguished train-node R called the root-train of T, and the

remaining train-nodes of T form an ordered pair of disjoint train binary trees T1

and T2.

www.manaraa.com

88 Ranjit Biswas

If T does contain a root-train R, then the two train binary trees T1 and T2 are

called respectively left train subtree and right train subtree of the train binary tree

R. If T1 is non-empty then its root-train is called the left successor of R and if T2

is non-empty then its root-train is called the right successor of R (see Figure 16).

The concept of left child train, right child train, parent train, sibling trains, etc. can

also be visualized in a classical way.

Figure 16. a train binary tree

A rT-coach binary tree T is defined as a finite set of tagged train coaches called

coach-nodes such that:

(a) T is empty (called the null tree or empty tree), or

(b) T contains a distinguished coach-node R called the root-coach of T, and the

remaining coach-nodes of T form an ordered pair of disjoint rT-coach binary trees

T1 and T2 (see Figure 17).

Figure 17. a rT-coach binary tree

www.manaraa.com

Data structures for big data 89

A r-atrain binary tree (or, atrain binary tree, in short) can also be defined in an

analogous way (see Figure 18) with tagged coaches as defined in section 2.2.3.

Figure 18. an atrain binary tree

A rA-coach binary tree T is defined as a finite set of tagged atrain coaches called

coach-nodes such that:

(a) T is empty (called the null tree or empty tree), or

(b) T contains a distinguished coach-node R called the root-coach of T, and the

remaining coach-nodes of T form an ordered pair of disjoint rA-coach binary trees

T1 and T2 (see Figure 19).

Figure 19. a rA-coach binary tree

A r-train tree (or train tree in short) T is defined as a non-empty finite set of

r-trains called train-nodes such that:

(a) T contains a distinguished train-node R called the root-train of T, and

(b) the remainingtrain-nodes of T form an ordered collection of zero or

 more number of disjoint train trees T1, T2, ….., Tm.

www.manaraa.com

90 Ranjit Biswas

The train trees T1, T2, …..,Tm are called train subtrees of the root-train R, and the

root-trains of T1, T2, ….., Tm are called successors of R. The concept of a children

trains, parent train, sibling trains, etc. can be visualized in a classical way.

A r-atrain tree (or atrain tree, in short), rT-coach tree and rA-coach tree can be

defined in an analogous way. The data structures r-train, r-atrain, r-train tree, and

r-atrain tree should not be confused with any of the data structures (basically for

multidimensional data) of the group : X-tree, R-tree, R+-trees, R*-trees, M-tree,

KD-tree, PQ-tree, SPQR-tree, Hilbert R-tree, etc. etc.

It may be noted that the data structure rT-coach binary tree is a special case of the

data structure r-train binary tree, the data structure rA-coach binary tree is a

special case of the data structure r-atrain binary tree. The classical binary tree is a

special case of the data structures r-train binary tree and r-atrain binary tree.

Similarly the classical tree is a special case of the data structures r-train tree and

r-atrain tree. The ADS (unitier or multitier) with the new type of network

topologies ‘Multi-horse Cart Topology’ and ‘Cycle Topology’ defined by Biswas

in [15] is the appropriate distributed system to implement atrain tree for big data

of any 4Vs of any momentum as the ADS is scalable upto any desired extent both

in breadth and depth.

5 Conclusion

Today’s supercomputer or multiprocessor system which can provide huge

parallelism has become the dominant computing platform (through the

proliferation of multi-core processors). In most of the giant business organizations,

the system has to deal with Big Data of homogeneous or heterogeneous nature for

which the data structures of the existing literature can not always lead to the

desired optimal satisfaction. The existing data structures of Computer Science are

neither appropriate nor sufficient to deal with big data. The very common and

frequent operations like Insertion, deletion, searching, etc. are required to be much

faster even if the Big Data be of heterogeneous types. Such situations require

some way or some method which work more efficiently than the simple

rudimentary data structures such as arrays, linked lists, hash tables, binary search

trees, dictionary, etc. Obviously, there is a need of a dash of creativity of a new or

better performed heterogeneous data structure which at the same time must be of

rudimentary in nature. The data structure ‘r-train’ (or ‘train’ in short) is a

homogeneous data structure can deal with homogeneous Big Data very efficiently.

The data structure ‘r-atrain’ (or, atrain) is a robust kind of dynamic

heterogeneous data structure which encapsulates the merits of the arrays and of

the linked lists, but are different from them and can deal with heterogeneous Big

Data. The strong merit of the atrain distributed system (ADS) introduced in [15] is

that it is an infinitely scalable architecture (along breadth and depth both) of

www.manaraa.com

Data structures for big data 91

distributed system for processing big data of any momentum of 4Vs. It is so

constructed that it has 100% compatibility with the data structure atrain (and train)

exclusively discovered for big data. The data structures train tree and atrain tree

can be well implemented in atrain distributed systems for big data. Although big

data is explosively expanding with 4Vs, the subject has not been growing in the

same pace. One of the reasons is that the existing data structures are not the

appropriate data structures for big data. The first attempt to introduce a data

structure for big data is the discovery of the data structures atrain (and train) in

[11, 12, 15], with the distributed system ADS of new type of network topologies

‘Multi-horse Cart Topology’ and ‘Cycle Topology’. The ‘Data Structures for

Big Data’ is to be regarded as a new subject, not just as a new topic in Big Data

Science, considering the explosive momentum of the big data. Consequently, in

this paper we introduce few more new data structures for big data which are :

homogeneous stacks ‘train stack’ and ‘rT-coach stack’, heterogeneous stacks

‘atrain stack’ and ‘rA-coach stack’, homogeneous queues ‘train queue’ and

‘rT-coach queue’, heterogeneous queues ‘atrain queue’ and ‘rA-coach queue’,

homogeneous binary trees ‘train binary tree’ and ‘rT-coach binary tree’,

heterogeneous binary trees ‘atrain binary tree’ and ‘rA-coach binary tree’,

homogeneous trees ‘train tree’ and ‘rT-coach tree’, heterogeneous trees ‘atrain

tree’ and ‘rA-coach tree’, to enrich the new subject ‘Data Structures for Big Data’

with the extended notion of the architecture of the data structures r-atrain (atrain)

and r-train (train) of Biswas [11, 12, 15] for big data. The natural number r is

fixed for a stack / queue / binary tree or tree, but could be different for different

stacks / queues / binary trees or trees. All these big data structures can be well

implemented in ADS.

The “Big Data Universe” needs intensive attention not only just for finding

solutions to the present problem of explosive expansion, but also for the

tremendous future expansion. It is fact [15] that the present 4Ns are lagging

behind the present 4Vs. Everyday’s big data is bigger than the previous day’s big

data in the big data universe. The data structure atrain for big data and the

distributed system ADS for big data can deal with any amount of 4Vs because of

its scalability property upto any desired amount both in breadth and depth.

However, for the future big data of the ‘Big Data Universe’, the train/atrain data

structures can be further extended embedded with the families of data structures

proposed in this paper to create new big data structures viz. m-train of r-trains,

m-atrain of r-atrains, m-train of r-train stacks, m-atrain of r-atrain stacks, m-train

of r-train queues, m-atrain of r-atrain queues, m-train of r-train binary trees,

m-atrain of r-atrain binary trees, etc. depending upon the 4Vs of future big data.

Consequently, the corresponding distributed system EADS (‘Extended ADS’) of

several designs can be created by developing new methods on how to integrate

multiple ADSs to make an EADS, designing new type of Hybrid Topologies of

‘Multi-horse Cart Topology’, ‘Cycle Topology’ and other existing classical

topologies.

www.manaraa.com

92 Ranjit Biswas

Our next work will also be to study these big data structures with sufficient

examples, to introduce the data structures ‘train graph’ and ‘atrain graph’

considering the big data in the topologies of communication network, in particular

while a large number of communication networks logically merge together to

form a singly network and to work efficiently as a single network as it seems to

the laymen users. An important problem to the computer scientists is to develop a

new but simple big data language called by “ADSL”' (Atrain Distributed System

Language) which can easily be used by any laymen user at the PC of an ADS to

download unlimited amount of relevant big data of any heterogeneous datatype (if

not of homogeneous datatype) from the cyberspace, to upload unlimited amount

of big data of any heterogeneous datatype (or homogeneous datatype) in the

cyberspace, to store the downloaded big data online in the coaches of PC/DCs of

ADS in an organized way of atrain (train) architecture, to answer any query be it

arithmetical or statistical or relational query or imprecise query on big data.

References

[1] Andrew S. Tanenbaum, Computer Networks (3rd Edition), Pearson

Education India, 1993.

[2] Ashu M. G. Solo, Multidimensional Matrix Mathematics: Part 1-6,

Proceedings of the World Congress on Engineering 2010 Vol III, WCE 2010,

June 30 - July 2, 2010, London, ISBN: 978-988-18210-8-9, ISSN:

2078-0958 (Print); ISSN: 2078-0966 (Online).

[3] Bashir Alam, Matrix Multiplication using r-Train Data Structure, 2013

AASRI Conference on Parallel and Distributed Computing Systems, AASRI

(Elsevier) Procedia 5 (2013) 189 – 193, doi: 10.1016/j.aasri.2013.10.077.

[4] Christian Krattenthaler and Michael Schlosser, A New Multidimensional

Matrix Inverse with Applications to Multiple q-series, Discrete Mathematics,

Volume 204, Issues 1 - 3, 6 June 1999, Pages 249 - 279.

http://dx.doi.org/10.1016/s0012-365x(98)00374-4

[5] David Feinleib, “Big Data Demystified: How Big Data Is Changing The Way

We Live, Love And Learn”, The Big Data Group Publisher, LLC San Francisco,

USA, 2013.

[6] Erik Thomsen, OLAP Solutions: Building Multidimensional Information

Systems, 2nd Edition. John Wiley & Sons. USA, 2002.

[7] Jeffrey Needham, Disruptive Possibilities: How Big Data Changes

Everything, O’reilly Publisher, Cambridge, 2013.

http://dx.doi.org/10.1016/s0012-365x%2898%2900374-4

www.manaraa.com

Data structures for big data 93

[8] Joel L Franklin, Matrix Theory, Mineola, N.Y., 2000.

[9] Jules J Berman, Principles of Big Data: Preparing, Sharing, and Analyzing

Complex Information, Morgan Kaufmann (Elsevier) Publisher, USA, 2013.

[10] Phil Simon, Too Big to Ignore: The Business Case for Big Data, John Wiley

& Sons, New Jersey, 2013.

[11] Ranjit Biswas, Heterogeneous Data Structure “R-Atrain”, INFORMATION:

An International Journal (Japan), Vol.15 (2) February’2012, pp 879-902 (©2012

International Information Institute of Japan & USA).

[12] Ranjit Biswas, Heterogeneous Data Structure “r-Atrain”, Chapter-12 in

“Global Trends in Knowledge Representation and Computational Intelligence”

by B. K. Tripathy and D. P. Acharjya, IGI Global, USA, 2013. (DOI:

10.4018/978–1–4666–4936–1, ISBN13: 9781466649361,

ISBN10: 1466649364, EISBN13: 9781466649378).

[13] Ranjit Biswas, Region Algebra, Theory of Objects & Theory of Numbers,

International Journal of Algebra, Vol. 6 (8), 2012, 1371 – 1417.

[14] Ranjit Biswas, Theory of Solid Matrices & Solid Latrices, Introducing New

Data Structures MA, MT: for Big Data, International Journal of Algebra, Vol.7

(16) (2013) pp 767 – 789, http://dx.doi.org/10.12988/ija.2013.31093.

[15] Ranjit Biswas, Processing of Heterogeneous Big Data in an Atrain

Distributed System (ADS) Using the Heterogeneous Data Structure r-Atrain,

International Journal Computing and Optimization, Vol.1 (1) 2014, pp.17 - 45.

http://dx.doi.org/10.12988/ijco.2014.445

[16] Sitarski, Edward, HATs: Hashed array trees, Dr. Dobb's Journal 21(11),

1996. http://www.ddj.com/architect/184409965?pgno=5

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein, Introduction to Algorithms, Second Edition, MIT Press and McGraw-Hill,

2001.

[18] Viktor Mayer - Schönberger and Kenneth Cukier, BIG DATA: A Revolution

That Will Transform How We Live, Work, and Think, Eamon Dolan/Houghton

Mifflin Harcourt Publisher, 2013.

Received: August 15, 2014; Published: November 12, 2014

http://dx.doi.org/10.12988/ijco.2014.445
http://en.wikipedia.org/wiki/Charles_E._Leiserson
http://en.wikipedia.org/wiki/Ronald_L._Rivest
http://en.wikipedia.org/wiki/Introduction_to_Algorithms

